plotnine -nneed to work¶
ggplot2 is a very useful package in R for creating advanced plots. In Python, the plotnine library is used to create ggplot2-like plots. You can import the module using import plotnine as p9. Generating plots in ggplot2 (plotnine) follows a structured series of steps, which can be accomplished via:
- initialize it

- Define aesthetics using
aesand specify your arguments. The most important aesthetics include:x,y,alpha,color,colour,fill,linetype,shape,size, andstroke. To create variations of the plot with different parameters, you can assign it to a variable.
CHD_plot=CHD_plot + p9.aes(x='median_income', y='median_house_value')
# or CHD_plot=p9.ggplot(data=CHD,mapping=p9.aes(x='median_income', y='median_house_value'))
CHD_plot.show()

- Specify what you want to display and use the
+operator to add layers and customize your plot.

You can easily add scale and define label:
CHD_plot=CHD_plot+ p9.geom_point(alpha=0.15)+ p9.xlab("median_income") +
p9.ylab("median_house_value") + p9.scale_x_log10() +
p9.theme_bw()+ p9.theme(text=p9.element_text(size=10))

- After creating your plot, you can save it to a file in your favourite format
bar chart¶
To generate a bar chart, you can use geom_bar()

Plotting distributions¶
- A boxplot can be created using
geom_boxplot():
CHD_dist=(p9.ggplot(data=CHD,
mapping=p9.aes(x='famlev',
y='median_income'))
+ p9.geom_boxplot()
+ p9.scale_y_log10()
)

- To add points behind the boxplot, you can use geom_jitter() to plot the points with some random noise to avoid overlapping points. This will create a visual representation of the data points behind the boxplot. Here's an example:
CHD_dist=(p9.ggplot(data=CHD,
mapping=p9.aes(x='famlev',
y='median_income'))
+ p9.geom_boxplot()
+ p9.geom_jitter(alpha=0.1, color="green")
+ p9.scale_y_log10()
)
